3.303 \(\int \frac{\cot ^2(c+d x) \csc (c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=53 \[ \frac{\cot (c+d x)}{a d}-\frac{\tanh ^{-1}(\cos (c+d x))}{2 a d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d} \]

[Out]

-ArcTanh[Cos[c + d*x]]/(2*a*d) + Cot[c + d*x]/(a*d) - (Cot[c + d*x]*Csc[c + d*x])/(2*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.102679, antiderivative size = 53, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {2839, 3768, 3770, 3767, 8} \[ \frac{\cot (c+d x)}{a d}-\frac{\tanh ^{-1}(\cos (c+d x))}{2 a d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^2*Csc[c + d*x])/(a + a*Sin[c + d*x]),x]

[Out]

-ArcTanh[Cos[c + d*x]]/(2*a*d) + Cot[c + d*x]/(a*d) - (Cot[c + d*x]*Csc[c + d*x])/(2*a*d)

Rule 2839

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{\cot ^2(c+d x) \csc (c+d x)}{a+a \sin (c+d x)} \, dx &=-\frac{\int \csc ^2(c+d x) \, dx}{a}+\frac{\int \csc ^3(c+d x) \, dx}{a}\\ &=-\frac{\cot (c+d x) \csc (c+d x)}{2 a d}+\frac{\int \csc (c+d x) \, dx}{2 a}+\frac{\operatorname{Subst}(\int 1 \, dx,x,\cot (c+d x))}{a d}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{2 a d}+\frac{\cot (c+d x)}{a d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d}\\ \end{align*}

Mathematica [A]  time = 0.398791, size = 94, normalized size = 1.77 \[ \frac{\left (\csc \left (\frac{1}{2} (c+d x)\right )+\sec \left (\frac{1}{2} (c+d x)\right )\right )^2 \left (\sin (2 (c+d x))-\cos (c+d x)+\sin ^2(c+d x) \left (\log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )\right )}{8 a d (\sin (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]^2*Csc[c + d*x])/(a + a*Sin[c + d*x]),x]

[Out]

((Csc[(c + d*x)/2] + Sec[(c + d*x)/2])^2*(-Cos[c + d*x] + (-Log[Cos[(c + d*x)/2]] + Log[Sin[(c + d*x)/2]])*Sin
[c + d*x]^2 + Sin[2*(c + d*x)]))/(8*a*d*(1 + Sin[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 0.114, size = 94, normalized size = 1.8 \begin{align*}{\frac{1}{8\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{1}{2\,da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{1}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}+{\frac{1}{2\,da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{1}{8\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c)),x)

[Out]

1/8/d/a*tan(1/2*d*x+1/2*c)^2-1/2/d/a*tan(1/2*d*x+1/2*c)+1/2/d/a/tan(1/2*d*x+1/2*c)+1/2/d/a*ln(tan(1/2*d*x+1/2*
c))-1/8/d/a/tan(1/2*d*x+1/2*c)^2

________________________________________________________________________________________

Maxima [B]  time = 1.10902, size = 155, normalized size = 2.92 \begin{align*} -\frac{\frac{\frac{4 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}}{a} - \frac{4 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac{{\left (\frac{4 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}{a \sin \left (d x + c\right )^{2}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/8*((4*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^2/(cos(d*x + c) + 1)^2)/a - 4*log(sin(d*x + c)/(cos(d*
x + c) + 1))/a - (4*sin(d*x + c)/(cos(d*x + c) + 1) - 1)*(cos(d*x + c) + 1)^2/(a*sin(d*x + c)^2))/d

________________________________________________________________________________________

Fricas [A]  time = 1.93126, size = 247, normalized size = 4.66 \begin{align*} -\frac{{\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) -{\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) + 4 \, \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right )}{4 \,{\left (a d \cos \left (d x + c\right )^{2} - a d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/4*((cos(d*x + c)^2 - 1)*log(1/2*cos(d*x + c) + 1/2) - (cos(d*x + c)^2 - 1)*log(-1/2*cos(d*x + c) + 1/2) + 4
*cos(d*x + c)*sin(d*x + c) - 2*cos(d*x + c))/(a*d*cos(d*x + c)^2 - a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\cos ^{2}{\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}}{\sin{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**3/(a+a*sin(d*x+c)),x)

[Out]

Integral(cos(c + d*x)**2*csc(c + d*x)**3/(sin(c + d*x) + 1), x)/a

________________________________________________________________________________________

Giac [A]  time = 1.36731, size = 127, normalized size = 2.4 \begin{align*} \frac{\frac{4 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a} + \frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 4 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{2}} - \frac{6 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 4 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1}{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/8*(4*log(abs(tan(1/2*d*x + 1/2*c)))/a + (a*tan(1/2*d*x + 1/2*c)^2 - 4*a*tan(1/2*d*x + 1/2*c))/a^2 - (6*tan(1
/2*d*x + 1/2*c)^2 - 4*tan(1/2*d*x + 1/2*c) + 1)/(a*tan(1/2*d*x + 1/2*c)^2))/d